- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0010000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Bo (1)
-
Chen, Niusen (1)
-
Dafoe, Josh (1)
-
Singh, Harsh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With increasing development of connected and autonomous vehicles, the risk of cyber threats on them is also increasing. Compared to traditional computer systems, a CAV attack is more critical, as it does not only threaten confidential data or system access, but may endanger the lives of drivers and passengers. To control a vehicle, the attacker may inject malicious control messages into the vehicle’s controller area network. To make this attack persistent, the most reliable method is to inject malicious code into an electronic control unit’s firmware. This allows the attacker to inject CAN messages and exhibit significant control over the vehicle, posing a safety threat to anyone in proximity. In this work, we have designed a defensive framework which allows restoring compromised ECU firmware in real time. Our framework combines existing intrusion detection methods with a firmware recovery mechanism using trusted hardware components equipped in ECUs. Especially, the firmware restoration utilizes the existing FTL in the flash storage device. This process is highly efficient by minimizing the necessary restored information. Further, the recovery is managed via a trusted application running in TrustZone secure world. Both the FTL and TrustZone are secure when the ECU firmware is compromised. Steganography is used to hide communications during recovery. We have implemented and evaluated our prototype implementation in a testbed simulating the real-world in-vehicle scenario.more » « less
An official website of the United States government
